
The Curie temperature of thin ferromagnetic films

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2009 J. Phys.: Condens. Matter 21 376002

(http://iopscience.iop.org/0953-8984/21/37/376002)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 05:25

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/21/37
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 21 (2009) 376002 (6pp) doi:10.1088/0953-8984/21/37/376002

The Curie temperature of thin
ferromagnetic films
Roman Rausch and Wolfgang Nolting

Festkörpertheorie, Institut für Physik, Humboldt-Universität, 12489 Berlin, Germany

Received 1 April 2009, in final form 24 May 2009
Published 17 August 2009
Online at stacks.iop.org/JPhysCM/21/376002

Abstract
The thickness-dependent Curie temperature Tc(d) of thin ferromagnetic films is calculated
within the molecular field approximation (‘Weiss mean field’) of the Heisenberg model. Two
higher mean field theories are applied to obtain a quantitative improvement of the results: the
Oguchi cluster method and the ‘constant coupling approximation’ (CCA). Analytical
expressions are derived from difference equations or eigenvalue problems with an unknown
parameter which can be solved numerically. Explicit expressions for Tc(d) can be given if the
interaction is restricted to next neighbour monolayers only, for any value of the spin S within
the Weiss mean field and for S = 1/2 within the CCA. Effects of an enhanced interaction
within the surface layers are briefly investigated. Calculated values of Tc(d) for EuO are
presented within the three models.

1. Introduction

The Heisenberg model is defined by the Hamiltonian H =
− ∑

i, j Ji j Ŝi Ŝ j where Ŝi describes a localized spin set in a
lattice. Its mean field approximation is known to predict the
basic characteristics of a ferromagnetic phase transition and
also qualitatively reproduces many magnetic properties of thin
films which can be regarded as a boundary problem within
the model. Several numerical and analytical results were
obtained by applying Heisenberg or Heisenberg-like models
to thin films [1–4]. In this work higher mean field theories
and the resulting quantitative deviations with regard to the
prediction of the Curie temperature Tc will be studied. The
simple mean field theory will be called the ‘Weiss mean
field’. The first step is to study a two-atomic cluster in
the effective field which will be called the ‘Oguchi cluster
method’ [5–7]. Finally, both approaches are combined in
the ‘constant coupling approximation’ [8, 7]. Results will be
presented in the case of S = 1/2 as well as applied to europium
oxide (EuO). We also discuss a change in the behaviour of
Tc(d) due to a stronger interaction at the surface layers.

Note that in a previous paper [9] it was shown that a
Heisenberg film of finite thickness with isotropic exchange
cannot show spontaneous magnetization, one has to implement
a small magnetic anisotropy (Mermin–Wagner theorem [10]).
It is, however, well-known that mean field type approaches,
as we are going to present, are removing anisotropy, thereby
violating the Mermin–Wagner theorem. Mean field theories
do not consider magnons or spin waves which is surely a

shortcoming of such approaches compared to, e.g., Green’s
function methods and the so-called Tyablikov approximation
(random phase approximation) [11, 12]. However, the
impact of anisotropy on the Curie temperature turns out
to be small [11, 13]. Furthermore, the aim of this paper
is to obtain handy analytical expressions for the transition
temperature of film systems, independent of the somewhat
arbitrary decoupling procedures of Green’s function methods.

2. The Weiss mean field

We begin by introducing suitable dimensionless variables, the
relative magnetization m = M(T )/M(0), the temperature
t = kBT/h̄2 J (1) in terms of the exchange constant for next
neighbours J (1) (kB: Boltzmann constant) and the magnetic
field b = gμB B/kBT (g: Landé factor, μB: Bohr magneton).
No external field will be considered, hence the magnetic field
only contains a contribution from the effective field. From the
partition function in the Weiss model Z S = ∑S

Sz=−S exp(Szb)

it follows that m = BS(Sb(m)) where BS is the Brillouin
function.

For a translation-invariant bulk material the effective field
depends on the magnetization, b = b(m), but in a thin
film translation invariance is only given within each layer.
Introducing mk as the magnetization in the kth monolayer one
now has to solve

mk = BS(Sbk(mk, mk±1, mk±2, . . .)), (1)
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where the effective field in the kth layer is now dependent on
the magnetizations in the neighbouring layers:

bk = 2S

t

(
I0mk +

∞∑

j=1

I j (mk+ j + mk− j )
)

(2)

with

I j =
∞∑

i=1

z(i)
j

J (i)

J (1)
. (3)

In this notation z(i)
j denotes the number of i th next neighbours

(i = 1: next neighbours) in the j th adjacent monolayer
( j = 0: same monolayer) and J (i) is the interaction strength
of the respective localized moments which only depends on
their distance. In practice, summation limits are restricted
by the regarded lattice as well as by the order of neighbours
one wishes to consider. Near the transition point mk and bk

are small and (1) can be linearized. Using (2) one obtains a
difference equation for mk :

mk = 2
3 S(S + 1)t−1

c

(
I0mk +

∞∑

j=1

I j (mk+ j + mk− j )
)
. (4)

Applying the boundary conditions for a thin film consisting of
d monolayers, mk�0 = mk�d+1 = 0, this can also be written
as a Toeplitz-type matrix eigenvalue problem:
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

I0 I1 I2 I3 . . . Id−1

I1 I0 I1 I2 I3
...

I2 I1 I0
. . .

. . . I3

I3 I2
. . .

. . .
. . . I2

...
. . .

. . .
. . . I0 I1

Id−1 . . . I3 I2 I1 I0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎝

m1

m2
...

md−1

md

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= tc
2
3 S(S + 1)

⎛

⎜
⎜
⎜
⎜
⎜
⎝

m1

m2
...

md−1

md

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (5)

The Curie temperature Tc then follows from the maximal
eigenvalue [14]. In the case that only I0 and I1 are non-
vanishing, i.e. the interaction is restricted to next neighbouring
monolayers only (note that this is not necessarily equal to next
neighbouring atoms), the corresponding matrix is tridiagonal
with an analytically known eigenvalue spectrum [15]. In this
case one obtains

tc(d) = 2

3
S(S + 1)

(

I0 + 2I1 cos

(
π

d + 1

))

. (6)

This is a slight generalization of the formula derived in [14].

3. The Oguchi cluster method

The Oguchi approximation is the simplest cluster method
where the contribution of one next neighbour to the
partition function is calculated exactly and the remaining next

neighbours are described by means of an effective field [7, 5, 6]
for which we now write BO. The Hamiltonian of the pair
located at the lattice sites i and j is hence given by

Hp = −2J (1)Ŝi Ŝ j − gμB

h̄
(Ŝz

i + Ŝz
j )BO. (7)

Let Σ̂ = Ŝi + Ŝ j denote the spin operator of the Oguchi cluster
with the eigenvalues

�/h̄ = 0, 1, . . . , 2S

�z/h̄ = −�,−� + 1, . . . , �.
(8)

The average total spin is given by

〈�̂z〉/h̄ = Z−1
S

∂

∂bO,k
Z S(t, bO,k) (9)

with the partition function

Z S(t, bO,k) = exp(−t−12S(S + 1))

sinh( 1
2 bO,k)

×
2S∑

�=0

exp(t−1�(� + 1)) sinh(bO,k(� + 1
2 )), (10)

where the sum over �z has already been performed and layer
dependence has been introduced by the index k.

Since a thin film is anisotropic by its nature, the interaction
partner can be either chosen from the same layer as the
regarded atom or from an adjacent layer. In contrast to a bulk
material these two approaches will now cause different results.

In the former case 〈�̂z〉 = 2〈Ŝz〉k = 2h̄Smk and
the effective Oguchi field bO,k differs from (2) only by the
replacement z(1)

0 mk → (z(1)
0 − 1)mk , as the contribution of one

next neighbour has been included exactly. Hence we obtain
a relation between the Oguchi effective field and the Weiss
effective field:

bO,k = 2S

t

(
(I0 − 1)mk +

∞∑

j=1

I j (mk+ j + mk− j )
)

= bk − 2S

t
mk . (11)

The sum in (10) is finite and can be calculated for any value of
S, but if S is high the resulting expressions will be somewhat
lengthy. However, after linearization for small bO,k one can
always write

〈�̂z〉/h̄ = fS(tc)bO,k (12)

with the function fS(tc) to be calculated for the respective
value of S. In the case of S = 1/2 one obtains f1/2(tc) =
2/(3 + exp(− 2

tc
)). Note that in the Weiss mean field method

the approximation fS ≈ const is made. Inserting (11) this leads
to a new difference equation for mk instead of (4):

mk = fS(tc)

tc

(
(I0 − 1)mk +

∞∑

j=1

I j (mk+ j + mk− j )
)
. (13)

On the other hand, if the cluster atoms belong to adjacent
monolayers, it follows that 〈�̂z〉 = h̄S(mk +mk±1) and one has
to substitute z(1)

1 mk±1 → (z(1)

1 − 1)mk±1 with the plus sign for

2



J. Phys.: Condens. Matter 21 (2009) 376002 R Rausch and W Nolting

odd k and the minus sign for even k, in analogy to the previous
procedure. It now follows that

mk = fS(tc)

tc

(

I0mk −
(

1 + tc
2 fS(tc)

)

mk±1

+
∞∑

j=1

I j (mk+ j + mk− j )

)

(14)

with the same choice of signs. Or in matrix notation (for even
d):
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

I0 I ′
1 I2 I3 . . . Id−1

I ′
1 I0 I1 I2 I3

...

I2 I1 I0 I ′
1

. . . I3

I3 I2 I ′
1

. . .
. . . I2

...
. . .

. . .
. . . I0 I ′

1
Id−1 . . . I3 I2 I ′

1 I0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎝

m1

m2
...

md−1

md

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= tc
fS(tc)

⎛

⎜
⎜
⎜
⎜
⎜
⎝

m1

m2
...

md−1

md

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(15)

with

I ′
1(tc) = I1 −

(

1 + tc
2 fS(tc)

)

. (16)

Equation (13) can be likewise written as an eigenvalue problem
similar to (15) and (5) and diagonalized to obtain the Curie
temperature. Note that the eigenvalues are now more complex
functions of the transition temperature. In addition, the matrix
in (15) is not of Toeplitz type any longer and some of its
entries are themselves dependent on tc, so instead of an
eigenvalue problem one now rather has to solve d equations
self-consistently for the parameter tc.

There are no further complications if the amount of
monolayers d is even. Suppose however that d is odd, d =
2n+1. If n is even, there will be n pairs of coupled monolayers
and one ‘surplus’ monolayer that cannot be characterized
in this way, see figure 1. One is then again forced to
choose interaction partners for its atoms from the layer itself.
Furthermore, its position within the film can be theoretically
freely chosen. The physically sensible choice would be the
middle (i.e. the (n + 1)th) monolayer since this preserves the
rotational invariance of the film.

If n is odd, preservation of the rotational invariance means
that there will be three of such surplus monolayers. Again,
the physically sensible setting would be to choose them as the
middle (i.e. the nth, (n + 1)th and (n + 2)th) layers because
one obtains a higher precision in respect to the surface layers,
which essentially determine the properties of a thin film.

This means that for d = 2n + 1 odd we obtain (15), but
with one or three deviating lines

ml = fS(tc)

tc

(
(I0 − 1)ml +

∞∑

j=1

I j (ml+ j + ml− j )
)

(17)

according to (13), where l = n for n even and l = n, n+1, n+
2 for n odd.

Figure 1. Schematic profile of a thin film with different possibilities
of pair clusters: (a) pair clusters within monolayers (any desired
amount); (b) odd amount of monolayers with one uncoupled;
(c) even amount of monolayers, all coupled; (d) odd amount of
monolayers with three uncoupled preserving rotational symmetry.

4. The constant coupling approximation (CCA)

In the previous models two different self-consistency equations
for the magnetization have been derived: (1) for one atom
and (9) for two atoms. The corresponding self-consistent
expression in the CCA [8, 7] can be most quickly arrived at by
combining them considering the respective physical situations,
i.e. by using the connection (11) between their effective fields.
We closely follow the procedure presented in [7] and apply it
to films.

If the pair cluster is situated within the same monolayer
one has to insert 〈�̂z〉 = 2h̄Smk = 2h̄SBS(Sbk) on the
left side of (9) and consequently (12) to obtain a new self-
consistency equation within the CCA instead of (1) and (9).
Linearizing both sides for small mk one arrives at the difference
equation

mk = (1 − 2
3 S(S + 1) f −1

S (tc))

×
(

I0mk +
∑

j

I j (mk+ j + mk− j )
)
. (18)

Comparing this with the similar equation for pure Oguchi
clusters (13) one notices that the preceding factor now only
depends on fS . In the S = 1/2 case, where f1/2 contains
only one exponential tc-dependent term, this allows an explicit
solution for tc if the eigenvalue problem can be solved
analytically. This is again the case when all I j except for I0

and I1 vanish and one obtains a short analytical formula

tc(d) = 2

(

ln

(
I0 + 2I1 cos

(
π

d+1

)

I0 − 4 + 2I1 cos
(

π
d+1

)

))−1

(S = 1/2),

(19)
which for d → ∞ approaches the bulk formula derived in [8].

If the pair cluster involves two monolayers, one has to
put 〈�̂z〉 = h̄S(mk + mk±1) = h̄S(BS(Sbk) + BS(Sbk±1))

with the choice of signs as before. Inserting this into (12) and
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Figure 2. Calculated values Tc(d)/Tc(∞) with an enhanced surface interaction of the form J (i)
sf. = s J (i). Tc(∞) was set to the value

determined for a sufficiently large d . Assumed parameters: sc(100) film of d monolayers with coordination numbers z(1)

0 = 4, z(2)

0 = 4,
z(1)

1 = 1, z(2)

1 = 4, furthermore J (2)/J (1) = 0.25, S = 1/2.

abbreviating σ = 2
3 S(S + 1) this leads to

2SI0 fSmk = σ(I0 + I1)mk + (σ (I0 + I1)

− 2S f (I1 − 1))mk±1 + (I1(σ − 2S fS) + σ I2)mk∓1

+
∞∑

j=2

I j (σ − 2S fS)(mk± j + mk∓ j )

+
∞∑

j=2

(I j−1mk± j + I j+1mk∓ j ). (20)

5. Enhancement of the surface interaction

One can emphasize the role of the surface layers in the
discussed models by modifying the interaction within them.
This can be achieved by scaling every exchange constant on
the surface (i.e. multiplicatively appearing before m1 and md )
by a surface factor s: J (i)

sf. = s J (i). This closely follows the
approach in [1] and very similar results are obtained.

With growing s the Curie temperature will apparently also
grow beyond the bulk value where one can assume that no such
surface effects exist. But it stands to reason to consider the
function Tc(d)/Tc(∞), i.e. carrying out the limit d → ∞ and
keeping the surface effect, even though it will not be the real
bulk temperature. With growing s, Tc(d)/Tc(∞) will at first
become almost a constant because the stronger interaction will
compensate the reduced coordination number, then exhibit a
maximum at d = 2 where there are no weaker intermediate
layers to force the surface layers into the paramagnetic phase.
For very large s it will become a constant again because the
surface interaction will dominate for every d .

This behaviour is shown in figure 2 for an sc(100) film. We
note that when varying s for the different mean field theories,
the maximum at d = 2 typically remains below 1.3. In [16] a
maximum Tc(d = 3)/Tc(d = 9) = 1.4 was measured for an
fcc-Fe film.

6. Comparison of results

The Weiss mean field theory is known to predict higher values
for Tc than the experimental results. They are lowered by the
application of higher mean field theories [7]. Similarly for a
thin film, corrections obtained from numerical solutions for
the parameter tc of (15) and analogous matrix representations
of (13), (18) and (20) lead to lower values of both Tc(d) and
Tc(d)/Tc(∞) than those obtained within the Weiss model ((5)
and (6)). The qualitative behaviour is unchanged, Tc(d) starts
with small values for small d because of a reduced coordination
number and approaches the bulk value for d → ∞. This
has been calculated numerically within the Heisenberg and
Ising models [1–4] and experimentally measured for different
materials [17–21, 16].

A local maximum of Tc(d)/Tc(∞) can be achieved with
higher interaction within the surface layers which is assumed
not to vanish when d approaches infinity [1, 16]. A genuinely
oscillatory behaviour of Tc in the shape of a damped sinusoidal
has been predicted [22] and also measured [23], but occurs
due to a Ruderman–Kittel–Kasuya–Yoshida (RKKY) type
of exchange coupling in itinerant ferromagnets which are
not considered here, we restrict ourselves to local-moment
systems.

Corrections from higher mean field theories are more
significant in the case of small coordination numbers and

4
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Figure 3. Comparison of the calculated values Tc(d)/Tc(∞) within
the Weiss mean field theory, the Oguchi cluster method and the
constant coupling approximation (CCA). Assumed parameters:
sc(100) film of d monolayers with coordination numbers z(1)

0 = 4,
z(2)

0 = 4, z(1)

1 = 1, z(2)

1 = 4, furthermore J (2)/J (1) = 0.25, S = 1/2.

Table 1. Comparison of the calculated values Tc(d) for EuO within
the Weiss mean field theory, the Oguchi cluster method and the
constant coupling approximation (CCA) choosing (a) pair cluster
within the same layer, (b) pair cluster within adjacent layers. Lattice
parameters: fcc(100) film with coordination numbers z(1)

0 = 4,
z(2)

0 = 4, z(1)

1 = 4, z(2)

1 = 1; EuO parameters: S = 7/2,
h̄2 J (1)/kB = 0.606K , h̄2 J (2)/kB = 0.119K [24]. The values in
brackets are flawed because not all monolayers can be coupled by
pair clusters (see figure 1).

Tc(d) (K) for EuO, fcc(100)

d
Weiss
m.f.

Oguchi
m.f. (a)

Oguchi
m.f. (b)

CCA
(a)

CCA
(b)

1 30.4 29.2 — 22.7 —
2 57.2 56.4 56.4 50.0 51.7
3 68.2 67.6 — 61.1 —
4 73.6 73.1 62.3 66.6 55.8
5 76.7 76.2 (63.4) 69.6 (56.9)
6 78.6 78.0 64.7 71.5 58.3
7 79.8 79.3 (67.0) 72.8 (60.6)
8 80.7 80.1 65.9 73.6 59.3

∞ 83.9 83.4 76.9

small values of S. In addition, if the pair cluster couples
two monolayers it will lead to higher corrections if the
corresponding amount of next neighbours between monolayers
(i.e. z(1)

1 ) is small. Hence, a high difference is expected for a
simple cubic lattice with the total coordination number z = 6
and especially an sc(100) film where z(1)

1 = 1. This is shown
for an arbitrary choice of exchange constants in figure 3.

When referring to real substances a question arises
about the influence of the electronic bandstructure on the
magnetic properties. The investigation in [13] reveals that
the electronic structure will exclusively influence the exchange
parameters J (1) and J (2) which are accurately known from
the experiment [24, 25] and cannot be derived within the

underlying theories. Therefore we use the experimental values,
as it is also done in [13].

The material EuO (fcc, S = 7/2) is usually regarded
as a prototypical Heisenberg ferromagnet. The results of a
calculation by the abovementioned procedure for an fcc(100)
film are shown in table 1. Because of the suitable lattice
parameters with vanishing Ii�2 (see the commentary above
the table), equation (6) may be used for the Weiss mean field.
The correction from higher mean field theories is not very
significant for small d , as compared to figure 3, but with
the pair cluster coupling adjacent monolayers a much slower
saturation behaviour is obtained. For the transition temperature
of a bulk material the Weiss mean field yields 83.9 K, the
Oguchi approximation adds just a small correction to 83.4 K
while the CCA predicts 76.9 K. Experimentally, Tc was
measured to be between 69 and 70 K for EuO [24, 26]. It
is to be expected that the calculated film values will deviate
from the measured results accordingly. Overall, mean field
theories applied to thin films seem to yield good results with
comparatively little effort and simple formulae which has to be
seen as their advantage.
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